Fault tolerant control with H∞ performance for attitude tracking of flexible spacecraft

نویسندگان

  • Q. Hu
  • B. Xiao
  • M. I. Friswell
چکیده

A fault-tolerant control scheme with thruster redundancy is developed and applied to perform attitude tracking manoeuvres for an orbiting flexible spacecraft. Based on the assumption of bounded elastic vibrations, an adaptive sliding mode controller is proposed to guarantee that all the signals of the resulting closed-loop attitude system are uniformly ultimately bounded in the presence of an unknown inertia matrix, bounded disturbances and unknown faults. An H∞ performance index is introduced to describe the disturbance attenuation performance of the closed-loop system. This approach is then extended to the problem of elastic vibration without knowledge of the bounds a priori. The presented approach addresses thruster saturation limits and the desired thruster force is guaranteed to stay within the limit of each thruster. Extensive simulation studies have been conducted to demonstrate the closed-loop performance benefits compared to conventional control schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault tolerant nano-satellite attitude control by adaptive modified nonsingular fast terminal control

In this paper, an adaptive fault tolerant nonlinear control is proposed for attitude tracking problem of satellite with three magnetorquers and one reaction wheel in the presence of inertia uncertainties, external disturbances, and actuator faults. Firstly, sliding surface variable is chosen based on avoiding the singularity of control signal and guaranteeing the convergence of attitude trackin...

متن کامل

Design of Nonlinear Robust Controller and Observer for Control of a Flexible Spacecraft

Two robust nonlinear controllers along with a nonlinear observer have been developed in this study to control a 1D nonlinear flexible spacecraft. The first controller is based on dynamic inversion, while the second one is composed of dynamic inversion and µ-synthesis controllers. The extension of dynamic inversion approach to flexible spacecraft is impeded by the non-minimum phase characteristi...

متن کامل

Quaternion-based Finite-time Sliding Mode Controller Design for Attitude Tracking of a Rigid Spacecraft during High-thrust Orbital Maneuver in the Presence of Disturbance Torques

In this paper, a quaternion-based finite-time sliding mode attitude controller is designed for a spacecraft performing high-thrust orbital maneuvers, with cold gas thrusters as its actuators. The proposed controller results are compared with those of a quaternion feedback controller developed for the linearized spacecraft dynamics, in terms of settling time, steady-state error, number of thrust...

متن کامل

Active fault-tolerant attitude control for flexible spacecraft with loss of actuator effectiveness

A theoretical framework for active fault-tolerant attitude stabilization control is developed and applied to flexible spacecraft. The proposed scheme solves a difficult problem of fault-tolerant controller design in the presence of severe partial loss of actuator effectiveness faults and external disturbances. This is accomplished by developing an observer-based fault detection and diagnosis me...

متن کامل

Active Vibration Suppression of a Nonlinear Flexible Spacecraft

In this article, the issue of attitude control and active vibration suppression of a nonlinear flexible spacecraft is assessed through piezoelectric patches as actuator and sensors. Two controller loops are applied: the inner loop, to make the panel vibration damped through piezoelectric patches; and the outer loop, to perform spacecraft maneuver using the reaction wheel acting on the hub. An o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012